LruCache 的使用及原始碼解析

2020-10-28 16:01:02

在Android 應用中恰當的使用快取技術不僅可以緩解伺服器壓力,還可以優化使用者的使用體驗,減少使用者流量的使用。常用的三級快取主要是指 LruCache、DiskLruCache、網路,其中 LruCache 對應記憶體快取、DiskLruCache 對應磁碟快取。LRU 全稱是 Least Recently Used,即最近最少使用策略,意思是當快取到達限制時候,優先淘汰近期內最少使用的快取,LruCache 和 DiskLruCache 都是採用 LRU 策略。比如說 Android 中常來快取 Bitmap,我們先從 LruCache 中取,取不到再從 DiskLruCache 中取,也取不到的話,最後才從資料來源獲取(網路下載 or 本地檔案)。

記憶體快取的特點:

讀取速度快
可分配空間小
有被系統回收風險
應用退出就沒有了,無法做到離線快取

磁碟快取的特點:

讀取速度比記憶體快取慢
可分配空間較大
不會因為系統記憶體緊張而被系統回收
退出應用快取仍然存在(快取在應用對應的磁碟目錄中解除安裝時會一同清理,快取在其他位置解除安裝會有殘留)

本文主要從原理、使用和原始碼的角度來解析 LruCache。

一、基本原理及底層實現

LruCache 使用了 LRU 快取淘汰演演算法,其中 LRU 全稱是 Least Recently Used,即最近最少使用策略。 其底層程式碼實現用到了LinkedHashMap 採用雙向連結串列這種資料結構,是一種空間換時間的設計思想,以及用 synchronized 來保證執行緒安全。並提供了get() 和 put() 方法來完成快取的獲取和新增操作,當快取滿時,LruCache 會移除較早使用的快取物件,然後再新增新的快取物件。來看原始碼註釋瞭解具體的操作過程:

A cache that holds strong references to a limited number of values. Each time a value is accessed, it is moved to the head of a queue. When a value is added to a full cache, the value at the end of that queue is evicted and may become eligible for garbage collection.
一個包含有限數量值的強參照的快取。每次存取一個值,它都會被移動到佇列的頭部。將一個新的值新增到已經滿了的快取佇列時,該佇列末尾的值將會被逐出,並且可能會被垃圾回收機制進行回收。

具體操作過程可看以下圖示:
在這裡插入圖片描述

二、LruCache 的使用

//獲取系統分配給每個應用程式的最大記憶體,單位換算為 KB
int maxMemory=(int)(Runtime.getRuntime().maxMemory()/1024);
int cacheSize=maxMemory/8; //取最大記憶體的 1/8 作為快取容量
private LruCache<String, Bitmap> mMemoryCache;
mMemoryCache = new LruCache<String, Bitmap>(mCacheSize){//給 LruCache 分配快取容量
    //重寫該方法,來測量 Bitmap 的大小  
    @Override  
    protected int sizeOf(String key, Bitmap bitmap) {  
        return bitmap.getRowBytes() * value.getHeight()/1024;  
    }  
};

在上面的程式碼中,只需提供快取的總容量大小並重寫 sizeOf() 方法即可。sizeOf() 方法的作用是計算快取物件的大小,這裡大小的單位需要和總容量的單位一致。對於上面的範例程式碼來說,總容量的大小為當前程序的可用記憶體的 1/8,單位為 KB(除以 1024 是為了將其單位轉換為 KB ),而 sizeOf() 方法則完成了 Bitmap 物件的大小計算。一些特殊情況下,還需要重寫 LruCache 的 entryRemoved() 方法,LruCache 移除舊快取時會呼叫 entryRemoved() 方法,因此可以在 entryRemoved() 中完成一些資源回收工作(如果需要的話)。
除了 LruCache 的建立以外,還有快取的獲取和新增,這也很簡單,從LruCache中獲取一個快取物件,如下所示。

三、部分原始碼解析

1. 構造方法
public class LruCache<K, V> {
	...
	public LruCache(int maxSize) {
        if (maxSize <= 0) {
            throw new IllegalArgumentException("maxSize <= 0");
        }
        this.maxSize = maxSize;
        this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
    }
}

LruCache 是一個泛型類,從建構函式可以看出,它內部採用了一個 LinkedHashMap強參照的方式儲存外界的快取物件,LinkedHashMap 的三個引數分別為 初始容量、載入因子 和 存取順序,當 accessOrder 為 true 時,這個集合的元素順序就會是存取順序,也就是存取了之後就會將這個元素放到集合的最後面(??);false 表示插入順序。

LinkedHashMap 引數介紹:
initialCapacity 用於初始化該 LinkedHashMap 的大小。
loadFactor(負載因子)是 LinkedHashMap 的父類別 HashMap 裡的構造引數,涉及到擴容問題,比如 HashMap 的最大容量是100,那麼這裡設定 0.75f 的話,到 75 的時候就會擴容。
accessOrder 是排序模式,true 表示按照存取順序進行排序( LruCache 核心工作原理就在此),false 表示按照插入的順序進行排序。

有關 LinkedHashMap 的原始碼分析,我們之後另開一篇文章來詳細介紹。這裡先簡單提一下,LinkedHashMap 預設的構造引數是插入順序的,就是說 LinkedHashMap 中儲存的順序是按照呼叫 put() 方法插入的順序進行排序的;而存取順序,是當我們存取了一個 key 後,這個 key 就跑到了隊尾這裡注意:我們在文章開頭看到 LruCache 原始碼註釋部分介紹的,「Each time a value is accessed, it is moved to the head of a queue. 」 每次存取一個值,它都會被移動到隊頭。那麼被存取的資料到底是被移動到了隊頭還是隊尾呢?帶著疑問我們繼續向下看。

加餐:這裡簡單介紹下上面涉及到的相關知識:強參照、軟參照、弱參照、虛參照的區別。

· 強參照:直接的物件參照;
· 軟參照:當一個物件只有軟參照存在時,系統記憶體不足時此物件會被 gc 回收;
· 弱參照:當一個物件只有弱參照存在時,此物件會隨時被 gc 回收;
· 虛參照:如果一個物件僅持有虛參照,那麼它就和沒有任何參照一樣,在任何時候都可能被垃圾回收。虛參照並不會決定物件的生命週期。虛參照主要用來跟蹤物件被垃圾回收的活動。虛參照必須和參照佇列(ReferenceQueue)聯合使用。

2. LruCahche 的 get() 方法
/**
     * Returns the value for {@code key} if it exists in the cache or can be
     * created by {@code #create}. If a value was returned, it is moved to the
     * head of the queue. This returns null if a value is not cached and cannot
     * be created.
     */
    public final V get(K key) {
        if (key == null) {
            throw new NullPointerException("key == null");
        }
        V mapValue;
        synchronized (this) {
            mapValue = map.get(key);
            if (mapValue != null) {
                hitCount++;
                return mapValue;
            }
            missCount++;
        }
        /*
         * Attempt to create a value. This may take a long time, and the map
         * may be different when create() returns. If a conflicting value was
         * added to the map while create() was working, we leave that value in
         * the map and release the created value.
         * 如果通過 key 從快取集合中獲取不到快取資料,就嘗試使用creat(key) 方法創造一個新資料。
         * create(key) 預設返回的也是 null,需要的時候可以重寫這個方法。 
         */
        V createdValue = create(key);
        if (createdValue == null) {
            return null;
        }
        //如果重寫了 create(key) 方法,建立了新的資料,就將新資料放入快取中。
        synchronized (this) {
            createCount++;
            mapValue = map.put(key, createdValue);
            if (mapValue != null) {
                // There was a conflict so undo that last put
                map.put(key, mapValue);
            } else {
                size += safeSizeOf(key, createdValue);
            }
        }
        if (mapValue != null) {
            entryRemoved(false, key, createdValue, mapValue);
            return mapValue;
        } else {
            trimToSize(maxSize);
            return createdValue;
        }
    }

從 get() 方法的註釋中我們可以看到,如果一個 key 存在於快取中,或者其可以由 create() 建立,則返回 key 的值。如果返回了一個值,它將移動到佇列的頭部。如果值未快取且無法建立,則返回 null。從而解答了我們上面的疑惑,被存取的元素會移動到佇列的頭部,而佇列的尾部元素是最近最少使用的元素。

3. LruCache 的 put() 方法
 /**
     * Caches {@code value} for {@code key}. The value is moved to the head of
     * the queue.
     *
     * @return the previous value mapped by {@code key}.
     */
    public final V put(K key, V value) {
        if (key == null || value == null) {
            throw new NullPointerException("key == null || value == null");
        }
        V previous;
        synchronized (this) {
            putCount++;
            //safeSizeOf(key, value)。
            //safeSizeOf() 方法內呼叫了 sizeOf() 方法,sizeOf() 方法預設返回1,也就是將快取的個數加1.
            // 當快取的是圖片的時候,這個 size 應該表示圖片佔用的記憶體的大小,所以應該重寫裡面呼叫的 sizeOf(key, value)
            size += safeSizeOf(key, value);
            //向 map 中加入快取物件,若快取中已存在,返回已有的值,否則執行插入新的資料
            previous = map.put(key, value);
            //如果已有快取物件,則快取大小恢復到之前
            if (previous != null) {
                size -= safeSizeOf(key, previous);
            }
        }
        //entryRemoved() 是個空方法,可以自行實現
        if (previous != null) {
            entryRemoved(false, key, previous, value);
        }
        //通過 trimToSize() 方法 來判斷 size 是否大於 maxSize。
        trimToSize(maxSize);
        return previous;
    }

可見,put() 方法就是新增快取物件,以及在新增過快取物件後,呼叫 trimToSize() 方法,來判斷加入元素後是否超過最大快取數,如果超過就要清除掉近期最少使用的元素。其原始碼如下

 /**
     * Remove the eldest entries until the total of remaining entries is at or
     * below the requested size.
     *
     * @param maxSize the maximum size of the cache before returning. May be -1
     *            to evict even 0-sized elements.
     */
    public void trimToSize(int maxSize) {
        while (true) {
            K key;
            V value;
            synchronized (this) {
            	//如果 map 為空並且快取 size 不等於 0 或者快取 size 小於 0 ,丟擲異常
                if (size < 0 || (map.isEmpty() && size != 0)) {
                    throw new IllegalStateException(getClass().getName()
                            + ".sizeOf() is reporting inconsistent results!");
                }
                //如果快取 size 小於最大快取,不需要再刪除快取物件,跳出迴圈
                if (size <= maxSize) {
                    break;
                }
                //在快取佇列中查詢最近最少使用的元素,若不存在,直接退出迴圈,若存在則在 map 中刪除該元素
                Map.Entry<K, V> toEvict = map.eldest();
                if (toEvict == null) {
                    break;
                }
                key = toEvict.getKey();
                value = toEvict.getValue();
                map.remove(key);
                size -= safeSizeOf(key, value);
                //回收次數 +1
                evictionCount++;
            }
            entryRemoved(true, key, value, null);
        }
    }
4. LruCache 的 remove() 方法
/**
     * Removes the entry for {@code key} if it exists.
     *
     * @return the previous value mapped by {@code key}.
     */
    public final V remove(K key) {
        if (key == null) {
            throw new NullPointerException("key == null");
        }
        V previous;
        synchronized (this) {
            previous = map.remove(key);
            if (previous != null) {
                size -= safeSizeOf(key, previous);
            }
        }
        if (previous != null) {
            entryRemoved(false, key, previous, null);
        }
        return previous;
    }

其內部呼叫了 entryRemoved() 的方法來實現從快取中刪除內容,並更新快取大小。

四、LeetCode :LruCache 快取機制。

LeetCode —— LRU快取機制

大家可以去力扣練習並熟練掌握其中一種解法。敲重點!!此題有大廠面試要求手寫哦~

五、LruCache 的官方檔案和完整原始碼謄錄

LruCache 官方檔案

LruCache 的完整原始碼

/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package android.util;
import android.compat.annotation.UnsupportedAppUsage;
import java.util.LinkedHashMap;
import java.util.Map;
/**
 * A cache that holds strong references to a limited number of values. Each time
 * a value is accessed, it is moved to the head of a queue. When a value is
 * added to a full cache, the value at the end of that queue is evicted and may
 * become eligible for garbage collection.
 *
 * <p>If your cached values hold resources that need to be explicitly released,
 * override {@link #entryRemoved}.
 *
 * <p>If a cache miss should be computed on demand for the corresponding keys,
 * override {@link #create}. This simplifies the calling code, allowing it to
 * assume a value will always be returned, even when there's a cache miss.
 *
 * <p>By default, the cache size is measured in the number of entries. Override
 * {@link #sizeOf} to size the cache in different units. For example, this cache
 * is limited to 4MiB of bitmaps:
 * <pre>   {@code
 *   int cacheSize = 4 * 1024 * 1024; // 4MiB
 *   LruCache<String, Bitmap> bitmapCache = new LruCache<String, Bitmap>(cacheSize) {
 *       protected int sizeOf(String key, Bitmap value) {
 *           return value.getByteCount();
 *       }
 *   }}</pre>
 *
 * <p>This class is thread-safe. Perform multiple cache operations atomically by
 * synchronizing on the cache: <pre>   {@code
 *   synchronized (cache) {
 *     if (cache.get(key) == null) {
 *         cache.put(key, value);
 *     }
 *   }}</pre>
 *
 * <p>This class does not allow null to be used as a key or value. A return
 * value of null from {@link #get}, {@link #put} or {@link #remove} is
 * unambiguous: the key was not in the cache.
 *
 * <p>This class appeared in Android 3.1 (Honeycomb MR1); it's available as part
 * of <a href="http://developer.android.com/sdk/compatibility-library.html">Android's
 * Support Package</a> for earlier releases.
 */
public class LruCache<K, V> {
    @UnsupportedAppUsage
    private final LinkedHashMap<K, V> map;
    /** Size of this cache in units. Not necessarily the number of elements. */
    private int size;
    private int maxSize;
    private int putCount;
    private int createCount;
    private int evictionCount;
    private int hitCount;
    private int missCount;
    /**
     * @param maxSize for caches that do not override {@link #sizeOf}, this is
     *     the maximum number of entries in the cache. For all other caches,
     *     this is the maximum sum of the sizes of the entries in this cache.
     */
    public LruCache(int maxSize) {
        if (maxSize <= 0) {
            throw new IllegalArgumentException("maxSize <= 0");
        }
        this.maxSize = maxSize;
        this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
    }
    /**
     * Sets the size of the cache.
     *
     * @param maxSize The new maximum size.
     */
    public void resize(int maxSize) {
        if (maxSize <= 0) {
            throw new IllegalArgumentException("maxSize <= 0");
        }
        synchronized (this) {
            this.maxSize = maxSize;
        }
        trimToSize(maxSize);
    }
    /**
     * Returns the value for {@code key} if it exists in the cache or can be
     * created by {@code #create}. If a value was returned, it is moved to the
     * head of the queue. This returns null if a value is not cached and cannot
     * be created.
     */
    public final V get(K key) {
        if (key == null) {
            throw new NullPointerException("key == null");
        }
        V mapValue;
        synchronized (this) {
            mapValue = map.get(key);
            if (mapValue != null) {
                hitCount++;
                return mapValue;
            }
            missCount++;
        }
        /*
         * Attempt to create a value. This may take a long time, and the map
         * may be different when create() returns. If a conflicting value was
         * added to the map while create() was working, we leave that value in
         * the map and release the created value.
         */
        V createdValue = create(key);
        if (createdValue == null) {
            return null;
        }
        synchronized (this) {
            createCount++;
            mapValue = map.put(key, createdValue);
            if (mapValue != null) {
                // There was a conflict so undo that last put
                map.put(key, mapValue);
            } else {
                size += safeSizeOf(key, createdValue);
            }
        }
        if (mapValue != null) {
            entryRemoved(false, key, createdValue, mapValue);
            return mapValue;
        } else {
            trimToSize(maxSize);
            return createdValue;
        }
    }
    /**
     * Caches {@code value} for {@code key}. The value is moved to the head of
     * the queue.
     *
     * @return the previous value mapped by {@code key}.
     */
    public final V put(K key, V value) {
        if (key == null || value == null) {
            throw new NullPointerException("key == null || value == null");
        }
        V previous;
        synchronized (this) {
            putCount++;
            size += safeSizeOf(key, value);
            previous = map.put(key, value);
            if (previous != null) {
                size -= safeSizeOf(key, previous);
            }
        }
        if (previous != null) {
            entryRemoved(false, key, previous, value);
        }
        trimToSize(maxSize);
        return previous;
    }
    /**
     * Remove the eldest entries until the total of remaining entries is at or
     * below the requested size.
     *
     * @param maxSize the maximum size of the cache before returning. May be -1
     *            to evict even 0-sized elements.
     */
    public void trimToSize(int maxSize) {
        while (true) {
            K key;
            V value;
            synchronized (this) {
                if (size < 0 || (map.isEmpty() && size != 0)) {
                    throw new IllegalStateException(getClass().getName()
                            + ".sizeOf() is reporting inconsistent results!");
                }
                if (size <= maxSize) {
                    break;
                }
                Map.Entry<K, V> toEvict = map.eldest();
                if (toEvict == null) {
                    break;
                }
                key = toEvict.getKey();
                value = toEvict.getValue();
                map.remove(key);
                size -= safeSizeOf(key, value);
                evictionCount++;
            }
            entryRemoved(true, key, value, null);
        }
    }
    /**
     * Removes the entry for {@code key} if it exists.
     *
     * @return the previous value mapped by {@code key}.
     */
    public final V remove(K key) {
        if (key == null) {
            throw new NullPointerException("key == null");
        }
        V previous;
        synchronized (this) {
            previous = map.remove(key);
            if (previous != null) {
                size -= safeSizeOf(key, previous);
            }
        }
        if (previous != null) {
            entryRemoved(false, key, previous, null);
        }
        return previous;
    }
    /**
     * Called for entries that have been evicted or removed. This method is
     * invoked when a value is evicted to make space, removed by a call to
     * {@link #remove}, or replaced by a call to {@link #put}. The default
     * implementation does nothing.
     *
     * <p>The method is called without synchronization: other threads may
     * access the cache while this method is executing.
     *
     * @param evicted true if the entry is being removed to make space, false
     *     if the removal was caused by a {@link #put} or {@link #remove}.
     * @param newValue the new value for {@code key}, if it exists. If non-null,
     *     this removal was caused by a {@link #put} or a {@link #get}. Otherwise it was caused by
     *     an eviction or a {@link #remove}.
     */
    protected void entryRemoved(boolean evicted, K key, V oldValue, V newValue) {}
    /**
     * Called after a cache miss to compute a value for the corresponding key.
     * Returns the computed value or null if no value can be computed. The
     * default implementation returns null.
     *
     * <p>The method is called without synchronization: other threads may
     * access the cache while this method is executing.
     *
     * <p>If a value for {@code key} exists in the cache when this method
     * returns, the created value will be released with {@link #entryRemoved}
     * and discarded. This can occur when multiple threads request the same key
     * at the same time (causing multiple values to be created), or when one
     * thread calls {@link #put} while another is creating a value for the same
     * key.
     */
    protected V create(K key) {
        return null;
    }
    private int safeSizeOf(K key, V value) {
        int result = sizeOf(key, value);
        if (result < 0) {
            throw new IllegalStateException("Negative size: " + key + "=" + value);
        }
        return result;
    }
    /**
     * Returns the size of the entry for {@code key} and {@code value} in
     * user-defined units.  The default implementation returns 1 so that size
     * is the number of entries and max size is the maximum number of entries.
     *
     * <p>An entry's size must not change while it is in the cache.
     */
    protected int sizeOf(K key, V value) {
        return 1;
    }
    /**
     * Clear the cache, calling {@link #entryRemoved} on each removed entry.
     */
    public final void evictAll() {
        trimToSize(-1); // -1 will evict 0-sized elements
    }
    /**
     * For caches that do not override {@link #sizeOf}, this returns the number
     * of entries in the cache. For all other caches, this returns the sum of
     * the sizes of the entries in this cache.
     */
    public synchronized final int size() {
        return size;
    }
    /**
     * For caches that do not override {@link #sizeOf}, this returns the maximum
     * number of entries in the cache. For all other caches, this returns the
     * maximum sum of the sizes of the entries in this cache.
     */
    public synchronized final int maxSize() {
        return maxSize;
    }
    /**
     * Returns the number of times {@link #get} returned a value that was
     * already present in the cache.
     */
    public synchronized final int hitCount() {
        return hitCount;
    }
    /**
     * Returns the number of times {@link #get} returned null or required a new
     * value to be created.
     */
    public synchronized final int missCount() {
        return missCount;
    }
    /**
     * Returns the number of times {@link #create(Object)} returned a value.
     */
    public synchronized final int createCount() {
        return createCount;
    }
    /**
     * Returns the number of times {@link #put} was called.
     */
    public synchronized final int putCount() {
        return putCount;
    }
    /**
     * Returns the number of values that have been evicted.
     */
    public synchronized final int evictionCount() {
        return evictionCount;
    }
    /**
     * Returns a copy of the current contents of the cache, ordered from least
     * recently accessed to most recently accessed.
     */
    public synchronized final Map<K, V> snapshot() {
        return new LinkedHashMap<K, V>(map);
    }
    @Override public synchronized final String toString() {
        int accesses = hitCount + missCount;
        int hitPercent = accesses != 0 ? (100 * hitCount / accesses) : 0;
        return String.format("LruCache[maxSize=%d,hits=%d,misses=%d,hitRate=%d%%]",
                maxSize, hitCount, missCount, hitPercent);
    }
}